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Abstract

With the advent of computational grids, networking performance over the wide-area network (WAN) has become a critical component in

the grid infrastructure. Unfortunately, many high-performance grid applications only use a small fraction of their available bandwidth

because operating systems and their associated protocol stacks are still tuned for yesterday’s network speeds. As a result, network gurus

undertake the tedious process of manually tuning system buffers to allow TCP flow control to scale to today’s WAN environments. And

although recent research has shown how to set the size of these system buffers automatically at connection set-up, the buffer sizes are only

appropriate at the beginning of the connection’s lifetime. To address these problems, we describe an automated and lightweight technique

called Dynamic Right-Sizing that can improve throughput by as much as an order of magnitude while still abiding by TCP semantics. We

show the performance of two user-space implementations of DRS: drsFTP and DRS-enabled GridFTP.

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction

TCP has entrenched itself as the ubiquitous transport

protocol for the Internet, as well as for emerging

infrastructures such as computational grids [1,2], data

grids [3,4], and access grids [5]. However, parallel and

distributed applications running stock TCP configurations

perform abysmally over networks with large bandwidth-

delay products (BDP) such as are typical in grid-computing

environments and satellite networks [6–8].

As noted in Refs. [6–9], congestion- and flow-control

adaptation bottlenecks are the primary reason for this abysmal

performance. The former is a topic of active research beyond

the scope of this paper [10–12]. In order to address the latter

problem, grid and network researchers continue to manually

tune buffer sizes to keep the network pipe full [7,13,14], and

thus achieve acceptable wide-area network (WAN) perform-

ance in support of grid computing. However, the tuning

process can be quite difficult, particularly for users and deve-

lopers who are not network experts. It involves calculating

the bandwidth of the bottleneck link and the round-trip time

(RTT) for a given connection. The optimal TCP buffer size is

equal to the product of the bandwidth of the bottleneck link

and the RTT, i.e. the effective BDP of the connection.

Currently, in order to tune buffer sizes appropriately, the

grid community uses diagnostic tools to determine the RTT

and the bandwidth of the bottleneck link. Such tools include

pipechar [15], nettimer [16], nettest [17], pchar [18], iperf

[19] and netspec [20]. However, none of these tools include

a client API so applications can tune their TCP connections

and all of the tools require a certain level of network

expertise to install and use. Furthermore, many of these

tools ‘pollute’ the network with extraneous (probe) packets.

To simplify the tuning process, several services that provide

clients with appropriate tuning parameters for a given

connection have been proposed, e.g. AutoNcFTP [21],

Web100 [22] and Enable [23], in order to eliminate what has

been called the wizard gap [24]. (The wizard gap is the

difference between the performance that a network ‘wizard’ can

achieve by appropriately tuning buffer sizes and the perform-

ance of an untuned application.) Although these services

provide good first approximations and can improve overall

throughput by 2–5 times over a stock TCP implementation,

they only measure the bandwidth and delay at connection set-up

time. This makes the implicit assumption that the bandwidth

and RTT of a given connection will not change significantly

over the course of the connection. In Section 2, we demonstrate

that this assumption is tenuous at best.

Computer Communications 27 (2004) 1364–1374

www.elsevier.com/locate/comcom

0140-3664/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2004.02.013

q This work was supported by the U.S. Dept of Energy through Los Alamos

National Laboratory contract W-7405-ENG-36. Any opinions, findings, and

conclusions, or recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of DOE, Los Alamos

National Laboratory. Los Alamos Unclassified Report (LA-UR) 03-1807.

1 URL: http://www.lanl.gov/radiant/.

* Corresponding author.

E-mail addresses: mkg@lanl.gov (M.K. Gardner); sunil@lanl.gov

(S. Thulasidasan); feng@lanl.gov (W.-c. Feng).

http://www.elsevier.com/locate/comcom
http://www.lanl.gov/radiant/


A more dynamic approach to optimizing communication

in a grid involves automatically tuning buffers over the

lifetime of the connection, not just at connection set-up. At

present, there exist two kernel-level implementations: auto-

tuning [25] and dynamic right-sizing (DRS) [26–28].

Auto-tuning implements sender-based flow-control

adaptation by fairly sharing buffer space on the sender. (It

assumes that receivers always have enough buffer space.)

DRS, on the other hand, implements receiver-based flow-

control adaptation by sizing the flow-control window (fwnd)

according to both the buffer space on the receiver and the

available bandwidth in the network. (DRS makes no

assumptions about the buffer space on the sender. A sender

without sufficient buffer space is allowed to transmit at a

slower rate than indicated by the fwnd of the receiver.)

Because auto-tuning does not take into account available

buffer space on the receiver when sending packets, it allows

the sender to (potentially) overrun the receiver, either

inadvertently (during a FTP transfer) or maliciously (during

a denial-of-service attack). DRS, on the other hand, is fully

compatible with regular TCP.2

Live WAN tests show that DRS in the kernel can achieve

a 30-fold increase in throughput when the network is

uncongested, although speed-ups of 7–8 times are more

typical. Achieving large speed-ups requires DRS to be

installed on every pair of communicating hosts in a grid. On

the other hand, it also benefits all TCP-based applications,

e.g. FTP, multimedia streaming and WWW, not just grid

applications.

Installing DRS requires knowledge about modifying,

recompiling and installing an operating system (OS) kernel,

along with root privilege to do so. Thus, DRS functionality

is generally not accessible to the typical end user. While we

anticipate that DRS will be incorporated into vendor’s

kernels so that it is transparent to the end user, users want

improved performance now. Thus, we present two portable

user-space implementations of DRS: drsFTP [29] and DRS-

enabled GridFTP.

drsFTP is similar in many ways to NLANR’s Auto-

NcFTP [30]. Both are modified FTP implementations,

which adjust buffer sizes to increase performance. The

differences are two-fold. First, AutoNcFTP relies on Nc-

FTP [31] whereas drsFTP uses the de-facto standard

FTP daemon originally from Washington University in

St Louis [32] and the open-source NetkitFTP client [33].

Second, the buffers in AutoNcFTP are only tuned at

connection set-up while drsFTP buffers are dynamically

tuned over the lifetime of the connection to provide better

adaptation and better overall performance.

The increased performance obtained from drsFTP

(Section 6.1) motivates us to integrate DRS into GridFTP

[34], a subsystem of the Globus Toolkit [35] for managing

bulk-data transfers in grids.

2. Background

TCP relies on two mechanisms to set its transmission

rate: flow control and congestion control. Flow control

ensures that the sender does not overrun the receiver’s

available buffer space (i.e. a sender can send no more data

than the size of the receiver’s last advertised flow-control

window), while congestion control ensures that the sender

does not overrun the network’s available bandwidth. TCP

implements these mechanisms via a flow-control window

(fwnd) that is advertised by the receiver to the sender and a

congestion-control window (cwnd) that is adapted by the

sender based on the inferred state of the network.

Specifically, TCP calculates an effective window, ewnd¼

minðfwnd;cwndÞ; and then sends data at a rate of ewnd/RTT,

where RTT is the round-trip time of the connection. The cwnd

varies dynamically as the network state changes; however, the

fwnd has traditionally been static despite the fact that today’s

receivers are not nearly as buffer-constrained as they were 20

years ago. Ideally, fwnd should vary with the BDP of the

network, thus providing the motivation for DRS.

Historically, a static fwnd sufficed for all communication

because the BDP of networks was small. Hence, setting fwnd

to small values produced acceptable performance while

wasting little memory. Today, most OS set fwnd < 64KB—

the largest window available without scaling [36]. Yet BDPs

range between a few bytes (56 Kbps £ 5 ms ! 36 B) and a

few megabytes (622 Mbps £ 100 ms ! 7.8 MB). In the

former case, the system wastes over 99% of the allocated

buffer space (i.e. 36 B/64KB ¼ 0.05%). In the latter case, the

system potentially wastes up to 99% of the network

bandwidth (i.e. 64KB/7.8 MB ¼ 0.80%).

Over the lifetime of a connection, bandwidth and delay

change (due to transitory queuing and congestion) implying

that the BDP also changes. We use nettimer to quantify how

much they change. (Although we would have like to sample

at the granularity of the RTT, the overhead of running

nettimer and other tools in user space prevent us from

obtaining the measurements we seek.) Fig. 1 presents

Fig. 1. Bottleneck bandwidth at 20-second intervals.

2 As a result of not taking into account the buffer space on the receiver,

auto-tuning appears to violate the TCP specification.
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the bottleneck bandwidth between Los Alamos and New

York at 20-second intervals. The bottleneck bandwidth

averages 17.2 Mbps with a low and a high of 0.026 and

285 Mbps, respectively. The standard deviation is

26.3 Mbps and the half-width of the 95% confidence

interval is 1.8 Mbps. Fig. 2 shows the RTT at 20-second

intervals, again between Los Alamos and New York. The

RTT delay also varies over a wide range 119–475 ms with

an average delay of 157 ms. Combining Figs. 1 and 2 results

in Fig. 3, which shows that the BDP of a given connection

can vary by as much as 61 Mbit.

Based on the above results, the BDP over the lifetime of a

connection is continually changing. Therefore, a fixed value

for fwnd is not ideal; selecting a fixed value forces an

implicit decision between (1) under-allocating memory and

under-utilizing the network or (2) over-allocating memory

and wasting system resources. Clearly, the grid community

needs a solution that dynamically and transparently adapts

fwnd to achieve good performance without wasting network

or memory resources.

3. Dynamic right-sizing in the kernel

DRS allows the receiver to estimate the sender’s cwnd

and to dynamically change the flow-control window fwnd to

match. The estimates are also used to keep pace with the

growth in the sender’s congestion window.3 As a result, the

throughput between end hosts, e.g. in a grid, will only be

constrained by the available bandwidth of the network,

rather than some arbitrarily set constant value on the

receiver.

Initially, at connection set-up, the sender’s cwnd is

smaller than the receiver’s advertised fwnd. To ensure that a

given connection is not flow-control constrained, the

receiver must continue to advertise a fwnd that is larger

than the sender’s cwnd.

The instantaneous throughput seen by a receiver may be

larger than the available end-to-end bandwidth. For

instance, data may travel across a slow link only to be

queued up on a downstream router and then sent to the

receiver in one or more fast bursts. The maximum size of

such a burst is bounded by the size of the sender’s cwnd and

the window advertised by the receiver. Because the sender

can send no more than one ewnd window’s worth of data

between acknowledgements, a burst that is shorter than a

RTT can contain at most one ewnd’s worth of data. Thus,

for any period of time that is shorter than a RTT, the amount

of data seen over that period is a lower bound on the size of

the sender’s cwnd. But how does such a distributed system

calculates RTT?

In a typical TCP implementation, the RTT is estimated

by observing the time between when data is sent and an

acknowledgement is returned. However, during a bulk-data

transfer, the receiver may not be sending any data, and

therefore, will not have an accurate RTT estimate. So, how

does the receiver infer delay when it only has acknowl-

edgements to transmit back and no data to send?

A receiver that is only transmitting acknowledgements

can still estimate the RTT by observing the time between

when a byte is first acknowledged and the receipt of data

that is at least one window beyond the sequence number that

was acknowledged. If the sending application does not have

any data to transmit, the estimated RTT could be much

larger than the actual RTT. Thus, the estimate acts as an

upper bound on the RTT and should only be used when

there is no other source of RTT information. (For a rigorous

presentation of the lower and upper bounds, please see

Ref. [26,27].)

We note that DRS is TCP-friendly in the sense that N

congestion-limited flows, DRS-enabled or not, will each

receive a long-term average of 1/Nth of the bandwidth of a

fully utilized network. Since the congestion-control mech-

anism governs fairness and because it has the same

Fig. 2. Round-trip time at 20-second intervals.

Fig. 3. Bandwidth-delay product at 20-second intervals.

3 Under low-memory conditions, the receiver may advertise a smaller

window than the DRS algorithm suggests. The sender is also free to send

less than the advertised window.
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congestion-control mechanism, DRS responds to conges-

tion the same way as regular TCP. (Here we assume that the

end hosts have a fair buffer-allocation policy. If the buffer-

allocation policy is not fair, both regular TCP and DRS will

be unfair. The fault lies with the buffer-allocation policy, not

the transport protocol.) In an uncongested network,

however, DRS will attempt to utilize the excess capacity

that can exist when all the other connections are artificially

limited by their flow windows. As the network becomes

congested again, DRS throttles back and performs no better

(or worse) than regular TCP.

4. DRS in user space: drsFTP

As mentioned earlier, deploying DRS requires the OS

kernel to be recompiled, which is impractical in many

circumstances Thus, we propose a user-space implemen-

tation of DRS.

Unlike the kernel-space version of DRS which benefits

all applications transparently, user-space DRS must be

implemented by each pair of communicating applications.

In this section, we describe the implementation DRS in an

FTP client and server, resulting in drsFTP.

4.1. DRS in user-space

The primary difficulty in developing user-space DRS

applications lies in the fact that user-space code does not

have direct access to the state of the TCP stack.

Consequently, drsFTP has no knowledge of TCP par-

ameters, such as the RTT of a connection, the receiver’s

advertised window or the sender’s congestion window.

Information about a connection must be estimated from

coarse-grained user-space measurements rather than from

fine-grained TCP connection state.

FTP specifies that commands and replies are sent over a

control channel that is a completely separate TCP connec-

tion from the data channel where the transfer takes place. As

with AutoNcFTP and Enable, we focus on (1) adjusting

TCP’s system buffers over the data channel of FTP and

(2) using FTP’s stream file-transfer mode. The latter means

that a separate data connection is created for every file

transferred. If we assume the end-hosts are not bottlenecks

(and hence it makes sense to seek higher bandwidth), the

sender always has data to transmit during the lifetime of the

transfer. Once the file has been completely sent, the data

connection closes.

4.1.1. Determining available bandwidth

By definition, we know that the sender always has data to

send throughout the life of the FTP data connection. It then

follows that the sender will send data as fast as possible,

limited by its idea of the congestion- and flow-control

windows. Furthermore, the receiver is receiving data as

quickly as the current windows, network and CPU scheduling

conditions allow. Therefore, the average bandwidth that a

connection obtains is computed by dividing the number of

bytes transmitted by the time required to transmit them.

The difficulty lies in selecting the appropriate sampling

interval over which to aggregate the number of bytes

transmitted. (Equivalently, we can select a fixed number of

bytes to be received and measure how long it takes.)

Selecting too short of an interval dramatically increases

overhead and reduces performance. It also leads to

erroneous estimates because of scheduling and buffering

effects. On the other hand, selecting too long of an interval

decreases the responsiveness of DRS to changes in available

bandwidth and may reduce performance because the

estimated BDP, and hence, the receiver’s advertised

window, may be artificially small.

In the current implementation of drsFTP, the available

bandwidth is computed through the periodic invocation of a

signal handler upon alarm expiration. Different values for

the sampling interval can easily be tested by varying the

expiration time of the alarm. The average bandwidth

available to the connection over the last interval is the

number of bytes received since the last alarm signal divided

by the length of the interval. An appropriate choice for the

sample interval yields estimated bandwidth values of

sufficient accuracy.

4.1.2. Determining RTT

Unlike the procedure for estimating the bandwidth of a

connection, the RTT cannot be inferred in user-space

applications without injecting a very small amount of extra

traffic into the network. User-space code does not have

access to the inner workings of the TCP stack and hence

cannot know when a given packet is sent nor when its

acknowledgement is received.

To sidestep this problem, we send a small packet on the

FTP control channel for the sender to echo back. The

estimated RTT begins with the sending of a RTT probe

packet and ends when its echo is received. The additional

load on the network, as the result of RTT probe packets is

generally small, depending on the sampling interval.

(Section 4.1.4 gives an optimization which minimizes the

impact of RTT probes.)

We note that sending the RTT probe packet over the

control channel assumes that the control and data channels

follow the same route. In the case of three-party control of

a FTP data transfer, however, the control and data channels

are likely to take very different routes. Thus, the RTT

estimate may be inaccurate. We send RTT probes over the

control channel to comply with RFC 959 [37], since

commands cannot be sent on the data channel. If probes

could be sent on the data channel, then accurate RTT

estimates could be obtained in the manner described above.

4.1.3. Adjusting the receiver’s advertised window

User-space applications cannot directly set the flow-

control window in most TCP stacks. Instead, they must
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indirectly set the window by setting the TCP receive

buffer size to an appropriate value via a setsockopt

call.

In the worst case, the sender’s window is doubling with

every round trip during TCP slow start. When it is

determined that the receiver window should increase, the

new value should be at least double the current value. There

is no need to double the current value once TCP is out of

slow start. However, it is very difficult, in general, to

determine when slow start ends. Therefore, we increase the

receive buffer in drsFTP by a factor of two over the BDP

whenever the current buffer size is less than twice the BDP.

(In many protocol stacks, buffer space is not allocated until

it is actually used so excessive memory usage is not usually

a problem in practice.)

4.1.4. Adjusting the sender’s window

To take full advantage of dynamically changing buffer

sizes, the sender’s buffer should adjust in step with the

receiver’s. This presents a problem in user-space implemen-

tations because the sender’s code has no way of determining

the receiver’s advertised window size. The FTP protocol

specification [37] does not prohibit traffic on the control

channel during data transfer, however. Thus, a drsFTP

receiver may inform a drsFTP sender about changes in

buffer size by sending appropriate messages over the control

channel.

Since FTP is a bidirectional data-transfer protocol, the

receiver may be either the server or client. RFC 959

specifies that only clients may send commands on the

control channel, while servers may only send replies to

commands. Thus, a new command and reply must be

added in order to fully implement drsFTP. Serendipitously,

the Internet Draft of the GridFTP protocol extensions to

FTP [34] defines a ‘SBUF’ command, which is designed to

allow a client to set the server’s TCP buffer sizes before

data transfer commences. We extend the definition of

SBUF to allow this command to be specified during a data

transfer, i.e. to allow buffer sizes to be set dynamically.

The full definition of the expanded SBUF command

appears below.

Syntax:

sbuf ¼ SBUF kspacel kIDl kspacel ksizel
kIDl < ¼ knumberl
ksizel < ¼ knumberl

This command requests the server-PI (server protocol

interpreter) to set the send-buffer size to ksizel bytes,

assuming sufficient buffer space is available. kIDl is

provided to match a SBUF command to its reply. SBUF

may be issued at any time, including before or during an

active data transfer. If specified during a data transfer, it

affects the data transfer that started most recently. The

command is informational and need not be acted upon,

thus providing interoperability with existing, non-

drsFTP, applications.

Response Codes:

200 SBUF kspacel kIDl kspacel ksizel

The server-PI issues a 200 response code containing the

kIDl of the corresponding command and the new size of

the server’s buffer. kIDl allows the client-PI (client

protocol interpreter) to match replies to commands in

case multiple SBUF commands are outstanding in the

active transfer. ksizel allows the client-PI (client protocol

interpreter) to adjust its buffer usage in case the server-PI

chooses to allocate less than the requested amount of

buffer space.

In addition, we propose a new response code to allow the

server-as-receiver to notify the client-as-sender of changes

in the receive window.

New Response Code:

126 SBUF kspacel kIDl kspacel ksizel

A 126 response may be sent by the server-PI while it is

receiving data from the client-PI. As with the SBUF

command, this reply is informational and need not be

acted upon or responded to in any manner by the client-PI.

A non-drsFTP application will simply ignore the reply,

guaranteeing interoperability with a drs-FTP server.

This response code is consistent with RFC 959 and does

not interfere with any FTP extension or proposed extension.

We note that the SBUF command also provides a vehicle

for determining RTT without injecting a separate message

into the network. Since RTT probes need only contain an

kIDl, we allow SBUF commands to serve the dual purpose

of conveying the receiver’s buffer size to the sender and

probing for the RTT. Separate RTT probes, as discussed in

Section 4.1.2, are not needed in most instances. Separate

probes only become necessary if the time between buffer-

size changes becomes so large that the RTT becomes stale.

Since the mechanism for determining RTT via SBUF

messages is already in place, ‘empty’ SBUF messages with

the current buffer size serve as the RTT probe in this case.

4.1.5. TCP window scaling

Because the window-scaling factor in TCP is established

at connection set-up time, an appropriate scale must be set

before a new data connection is opened. Most OSs allow

TCP_RCVBUF and TCP_SNDBUF to be set on a socket

before a connection attempt is made and then use the

requested buffer size to establish the TCP window scaling.

drsFTP sets the send- and receive-buffer sizes to allow

windows of up to 16 MB worth of data before initiating
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connection set-up. Once the connection has been made (and

the window scale factor set properly), drsFTP resets the

buffer sizes back to their initial values.

In order to set the window scale factor appropriately, the

network buffer-size limits of the OS may need to be

increased. The steps involved in increasing the limits are OS

dependent. See Ref. [38] for an example of the steps

required for a variety of OSs.

5. DRS in GridFTP

In order to maintain strict compatibility with the FTP

specification, drsFTP only supports two-party transfers.

Fig. 4 shows a three-party transfer in which the client

coordinates a data transfer between two servers. Because

SBUF messages travel over the control path in drsFTP, the

RTT for a three-party transfer is incorrect. Three-party

transfers are easily supported if control commands and

their replies can be sent and received on the data channel

between servers. GridFTP [34], part of the Globus Toolkit

[35], already extends the FTP specification in ways that

provide most of the needed support for three-party transfers

with DRS. The additional features of GridFTP over FTP

include:

† Support for secure transfers.

† Parallel data transfers—where the data may be trans-

ferred in parallel streams between two nodes,

† Striped data transfers—where the data may be trans-

ferred to multiple nodes,

† Partial file transfers,

† Automatic negotiation of TCP buffer sizes.

The mechanisms provided by the last feature allow

SBUF messages to be exchanged on the data channel. These

messages are shown as dashed lines in Fig. 4.

Like the drsFTP server, the current GridFTP server is a

version of the wu-ftpd server, modified to support most of

the GridFTP protocol extensions. The GridFTP protocol

extends the FTP specification by including an Extended

Block Mode (Mode E). Mode E has 64-bit offset and length

fields in the header and supports out-of-order transmission.

It also supports parallel or striped transfers.

5.1. Determining RTT over the data channel

In drsFTP, RTT probes are sent on the control channel

This implicitly assumes that the path delay on the control

channel is the same as on the data channel. If the control

and data paths do not follow the same route, as is the

case with three-party transfers, the RTT computed by

drsFTP will be incorrect. As three-party transfers are

an important and oft-used feature of FTP, particularly in

scientific computing, a different approach is needed to

estimate RTT.

The GridFTP specification adds two commands for

setting TCP buffer sizes. The ABUF command sets buffer

sizes automatically at connection setup time by actively

probing the network for the RTT and available bandwidth.

The ABUF command is not implemented in the current

version of GridFTP. The SBUF command is used to set

the buffer sizes at a remote node. (As mentioned in

Section 4.1.4, we extend the semantics of the SBUF

command to allow it to be sent at any time during a data

transfer.) Because DRS-enabled GridFTP continuously

modifies buffer sizes as appropriate during a transfer, the

need for the ABUF command is eliminated.

Fig. 5 shows structure of the extended block header. The

8-bit descriptor field indicates the type of transfer. We

define two new descriptor codes, using two unallocated bits

in the descriptor field as shown in Fig. 6.

Upon expiration of an alarm, the receiver sends a

extended block header to the sender without a payload. The

descriptor field in the header indicates an encoded SBUF

message, while the byte-count field is set to the value of the

estimated BDP. When the sender receives a SBUF packet on

the data channel, it attempts to set its buffers to the value

contained in the kbyte-countl field. It also sends an

acknowledgement in an outgoing extended block header

in a manner similar to the way TCP piggy-backs

acknowledgements.

When the receiver obtains the acknowledgement, it

calculates the RTT as the difference between the acknowl-

edgment reception time and the SBUF send time. As in

Section 4.1.2, using SBUF messages to compute RTT, as

well as for conveying buffer sizes, eliminates the need to

inject extra traffic into the network.

Note that estimating RTT requires the data channel to be

bidirectional during a data transfer, i.e. full-duplex com-

munication must be supported over the data channel. This is

an extension to the current GridFTP implementation. By

estimating RTT over the data channel, parallel and striped

transfers are seamlessly supported.

Fig. 4. Data and control flow for a three-party transfer. Fig. 5. SBUF message encapsulated in a mode E header.
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5.2. Determining bandwidth in DRS-enable GridFTP

Bandwidth is computed in the same way as described in

Section 4.1.1. The average throughput over a sampling

interval is calculated on the receiving end upon the periodic

expiration of an alarm. The sampling interval can be

adjusted to obtain values of sufficient accuracy.

6. Experiments

In this section, we present results for both drsFTP and

DRS-enabled GridFTP. In particular, we will show that the

throughput improves by over 600%.

6.1. Performance of drsFTP

The experimental apparatus consists of three identical

machines connected via Fast Ethernet (100 Mbps) The

machines need only be fast enough to ensure that the hosts

are not the bottleneck. Each machine contains dual 400 MHz

Pentium II processors with 128 MB of RAM and two

network-interface cards (NICs). One machine acts as a WAN

emulator; each of its NICs is connected to one of the other

machines via a switch. (Fig. 7)

The WAN emulator, which is implemented using

TICKET technology [39], forwards packets at line rate

and has a user-settable delay. (In the results that follow, the

average RTT is 102.1 ms.) All FTP traffic, both data and

control, occurs through the WAN emulator.

As a baseline, we use stock FTP with TCP receive buffers

set at 64KB. (Most modern OS set their default TCP buffers

to 32 or 64KB. Therefore, this number represents the high

end of OS-default TCP buffer sizes.) We next test drsFTP,

allowing the buffer size to vary in response to network

conditions, starting from 64KB. Last of all, we test statically

tuned FTP with TCP buffers sizes chosen to represent over-

and under-provisioning.

The over-provisioned buffer size, representing the best

performance possible, is 16 MB, which is larger than

the BDP (12.2 MB). The under-provisioned buffer size is

212.5KB, which represents a BDP that is sampled when the

network is loaded. (The median value of BDP for the data in

Fig. 3 is 143.3KB. A buffer size of 212.5KB is in the 66th

percentile.)

For each test, we transfer a set of files, ranging from 8KB

to 64 MB, over the emulated WAN. The drsFTP sampling

interval used to estimate the available bandwidth is one

second, a conservative configuration with very low over-

head. (The performance is not sensitive to the duration of

the sampling interval as long as the sampling interval is

greater than the RTT. This is an artifact of not emulating

cross-traffic.)

Fig. 8 shows the average FTP bandwidth as a function of

the size of the transfer. (The x-axis has markers placed

according to the powers-of-two file sizes tested. The width

of the 95% confidence interval is less than ^5% in all

cases.) The average bandwidth of FTP with stock buffer

sizes approaches 5 Mbps for file sizes as small as 8 MB. In

contrast, the average bandwidth of drsFTP asymptotically

approaches 30 Mbps at over 64 MB file transfers. Thus, the

utilization of available bandwidth by drsFTP is approxi-

mately six times better than stock FTP.

The best bandwidth (34.5 Mbps) is achieved by the over-

provisioned FTP which has larger-than-required buffer

sizes. As shown, drsFTP achieves 78.7% of the over-

provisioned bandwidth. The primary reason for the

difference in performance is that drsFTP must rely on

coarse-grained measurements to infer available bandwidth

and RTT and hence may not grow the buffer sizes quickly

enough. This is an inherent limitation indicative of the

interim nature of the drsFTP application. Even though its

performance is not as good as the kernel-space implemen-

tation [26,27], drsFTP was developed to provide the benefits

of DRS to the grid community while vendors implement

DRS in their kernels.

Fig. 8 also compares the average bandwidth of drsFTP to

a statically tuned case where the BDP was sampled at an

inopportune time, e.g. at one of the lower data points in

Fig. 3. Here we see that drsFTP utilizes the available

Fig. 6. SBUF descriptors in a mode E header.

Fig. 7. Experimental apparatus. Fig. 8. Comparison of FTP, drsFTP and statically tuned FTP.
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bandwidth 2.4 times better than the statically tuned case.

The comparison illustrates the benefit of inferring the

available bandwidth and setting the flow-control buffers

dynamically.

So far, we have only addressed the issue of optimizing

transfer rates. We now turn our attention to buffer usage. As

motivation, we conjecture that memory consumption will

become a more serious issue as computational grids become

widely used and hence indispensable parts of the compu-

tational infrastructure.

While applications are able to use buffer space with

abandon now, we envision the time when grid nodes will

become heavily loaded with large numbers of potentially

diverse applications. One example might be a repository for

human genome information, which will be accessed

simultaneously by thousands of researchers. If each connec-

tion over-provisions its buffers, it is likely that the node will

run out of buffer space and reject connections, which could

otherwise be serviced had the connections been more frugal.

Fig. 9 shows the growth of the drsFTP receive buffer as a

function of time during three transfers of a 512 MB file. The

final buffer sizes for the three transfers range from 1.9 to

3.1 MB, with an average of 2.7 MB. Due to changing

conditions during the transfers, the buffer sizes grow at

different rates, particularly during the latter part of the transfer.

In contrast, the over-provisioned FTP uses a 16 MB buffer

which is statically allocated during connection set-up. Thus,

drsFTP achieves over three-quarters of the over-provisioned

performance while only using one-sixth the amount of

memory. In other words, drsFTP achieves an average of

10.1 Mbps per MB of buffer space used while statically tuned

FTP achieves only 2.2 Mbps per MB of buffer space used.

As Fig. 10 shows, drsFTP achieves five times better

utilization of the network with respect to memory than the

over-provisioned case. Even if the theoretically optimal

BDP of 12.2 MB been allocated instead of over-provision-

ing, drsFTP would still have been able to support more

connections with a 3.6 times improvement in Mbps per MB.

The difference between drsFTP and the statically tuned case

where the BDP was sampled at an inopportune time is even

more dramatic.

6.2. Performance of DRS-enabled GridFTP

In this section, we present the performance of DRS-

enhanced GridFTP on three-party transfers.

The experimental apparatus consists of four identical

machines as shown in Fig. 11. Each machine contains dual

500 MHz Pentium III processors with 1 GB of RAM and

two 100 Mbps NICs. One machine acts as a WAN emulator

with a 102.1 ms RTT. Each of its NICs is connected to one

of the server machines via a switch. The final machine acts

as the client.

The three-party data transfer is initiated by establishing a

control channel connection with the receiving host. The

client sends a PASV command to the receiving host to

instruct it to listen for a connection from the sending host.

The response to the PASV command is a host and port

address. Next, the client connects with the sender and issues

a PORT containing the host and port addresses it obtained

from the receiver. The PORT command instructs the sender

to use these values for the data connection.

We test GridFTP with default, statically tuned over-

provisioned and DRS-tuned buffer sizes. The files sizes

range from 1 to 512 MB. As shown in Fig. 12, the

bandwidth of GridFTP with default buffer sizes is

4.7 Mbps for the 512 MB transfer. In contrast, the

bandwidth of DRS-enabled GridFTP for the same file size

Fig. 9. drsFTP buffer sizes over time.

Fig. 10. Mbps per MB of buffer space.

Fig. 11. Experimental setup for three-party data transfer.
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is 30.0 Mbps, an increase of 633%. The bandwidth of

GridFTP with statically over-provisioned buffer sizes is

38.7 Mbps. Thus, DRS-enabled GridFTP achieves 77.5% of

the over-provisioned performance without the need to tune

the buffers by hand.

Fig. 13 shows the performance of GridFTP for various

numbers of parallel streams. The bandwidths on a 512 MB

transfer are 25.9, 79.3 and 84.8 Mbps for the default, DRS-

tuned and over-provisioned buffer sizes, respectively. Even

with parallel streams, DRS-enabled GridFTP delivers 306%

of the bandwidth of the stock case using equal numbers of

streams. In order to achieve the same performance as DRS-

enabled GridFTP with four streams, GridFTP with default

buffer sizes would require approximately 14 streams. Using

multiple streams with stock buffers is not scalable since

multiple streams increase OS overhead. Finally, we note that

the performance difference of DRS-enabled GridFTP with

respect to GridFTP using over-provisioned buffers indepen-

dent of the number of streams for large files sizes.

Fig. 14 compares the delivered bandwidth compared

with the amount of buffer space used. We use the Mbps per

MB metric we define in Section 6.1. DRS-enabled GridFTP

achieves 36.4 Mbps per MB of buffer used, while GridFTP

with over-provisioned buffers achieves 23.0 Mbps per MB,

a difference of 158%. The ratio is even greater for smaller

file sizes (e.g. the performance of DRS-enabled GridFTP is

16.9 times better than GridFTP with over-provisioned

buffers at a file size of 1 MB file).

Finally, we note that the performance of DRS-enabled

GridFTP for two-party transfers (not shown) is indistin-

guishable from the three-party case. This is to be expected

as two-party transfers are a degenerate case of three-party

transfers in which one of the end points is also the client.

7. Future work

The results of the experiments conducted so far indicate

that DRS, both kernel- and user-space, is likely to perform

well in the real world. Anecdotally, we have observed very

good performance on live networks but still need to

rigorously quantify the improvements. We need to do

more testing on connections with low and medium BDP. We

also need to test DRS with varying amounts of cross traffic.

Although we have shown preliminary results which

indicate that DRS is complementary to parallel streams as a

means of increasing throughput for large data transfers, the

interaction between DRS and parallel streams needs to be

better characterized. Does DRS subsume the need for parallel

streams or should a combined approach, as we implemented

in GridFTP, be used? The results seem to indicate that a

hybrid approach will yield the best performance for the

fewest numbers of streams (and hence OS resources).

Finally, we are working to get DRS incorporated into the

official Linux source tree. Once incorporated, applications

will transparently see an increase in delivered bandwidth. In

the meantime, we are continuing to develop drsFTP and

GridFTP.

8. Conclusion

This paper makes a number of significant contributions to

the high-speed networking and grid-computing communities.

Fig. 12. Bandwidth comparison for a three-party transfer.

Fig. 13. Bandwidth as a function of the number of streams.

Fig. 14. Delivered bandwidth vs. buffer sizes.
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First, we demonstrated that the BDP can vary widely over the

lifetime of a connection. Therefore, simply tuning buffers at

connection set-up is not good enough; they must be tuned over

the lifetime of the connection. This is the motivation for DRS.

Further, since we used nettimer to measure the BDP of a

connection, our estimates may be conservative because

nettimer measures static bottleneck bandwidth and dynamic

delay. With the recent release of pathload [40], which

measures dynamic available bandwidth and delay, our

initial tests indicate that the BDP actually fluctuates by an

additional order of magnitude.

Second, we illustrated how a receiver can measure the

bandwidth and RTT of a connection (i.e. BDP) without

‘polluting’ the network with extraneous probing packets.

The BDP value is then used as an upper bound for the flow-

control window in DRS.

Third, in the context of DRS, we have shown how a

TCP receiver can determine the approximate size of the

sender’s congestion window so that the receiver can

advertise a flow-control window that neither needlessly

constraints throughput nor unnecessarily over-allocates

buffer space. Furthermore, this can be done automatically

and transparently while abiding by TCP semantics. We

have shown how it can be done in user space and have

implemented it in drsFTP.

Fourth, we have demonstrated DRS support for grid

computing by extending the GridFTP application. Unfet-

tered by constraints imposed by the FTP specification, we

have extended GridFTP to support three-party, parallel and

striped transfers that are ubiquitous in grids computing.

Finally, we are making our implementations of DRS avai-

lable under an open-source license. The DRS kernel imple-

mentation has already been incorporated into the Web100

project [41]. We are also working to fold the modifications

necessary to support DRS into the GridFTP code base.
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